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Abstract. We introduce a hierarchical class of approximations of the random Ising spin glass
in d dimensions. The attention is focused on finite clusters of spins where the action of the
rest of the system is properly taken into account. At the lowest level (cluster of a single spin)
our approximation coincides with the SK model while at the highest level it coincides with the
true d-dimensional system. The method is variational and it uses the replica approach to spin
glasses and the Parisi ansatz for the order parameter. As a result we have rigorous bounds for
the quenched free energy which become more and more precise when larger and larger clusters
are considered.

1. Introduction

Research around spin glasses in finite dimensions is very active since it is still unclear if
they share all the qualitative features of the mean-field model SK. Since a direct study
of these systems is quite complicated, both from a numerical and an analytic point, it
could be of some interest to consider corrections to the SK model which partially take
the dimensionality into account. Our aim is to find out a systematic and rigorous way to
introduce these corrections. As a result, we generate a class of models which interpolate
between the mean-field SK model and exact spin glasses in finite dimensions. Our approach
uses the replica formalism together with the celebrated Parisi ansatz for the order parameter.

The standard replica approach to the SK model reduces the problem to a single spin
whose replicas interact via the variational order parameters{qab} that can be thought as
‘coupling fields’. This is the analogue of what one has for the mean-field model of the
ordinary ferromagnetic Ising systems. In this second case, in fact, one has a single spin in
a magnetic field generated by the rest of the system.

Both models, SK and mean-field Ising model, can be regarded as an approximation
of the associated Ising system in finited dimensions, but in both cases any reference
to the dimensionality is lost. The approximation can be improved and a memory of the
dimensionality can be maintained if, in spite of considering a single spin in a bath, one
focuses the attention on a cluster of interacting spins in a bath generated by the rest of the
system. The strategy, which is very successfully applied for ordinary spin systems (Bethe–
Peierls approximation [1, 2]), has recently been extended to spin glasses [3, 4]. Actually the
approach of [3, 4] turns out not to be very effective, since it does not allow for a study of the
replica symmetry breaking. This fact reduces the scope of the method to low-dimensional
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spin glasses, while ford > 3 dimensions it fails to describe the most striking feature of
these systems.

In this paper we introduce a new approach which allows for symmetry breaking. The
attention is focused on finite clusters of spins where the action of the rest of the system
is properly taken into account. The approximations we obtain are organized hierarchically
according to the size of the clusters. At the lower level (cluster of a single spin) our
approximation coincides with the SK model while at the highest level it coincides with the
true d-dimensional system. The method is variational and it uses the replica approach to
spin glasses and the Parisi ansatz for the order parameter. As a result we have rigorous
bounds for the quenched free energy which become more and more precise when larger and
larger clusters are considered.

Let us briefly sum up the contents of the paper. In section 2, we introduce the model
and we generalize the standard replica approach in order to take advantage from the cluster
partition of the lattice. In section 3, we derive the new variational approach and we find out
analytic lower bounds of the free energy of thed-dimensional spin glass. In section 4,
we choose the Parisi ansatz in order to obtain a computable solution to the problem.
In particular, we write down the free energy in the case ofk symmetry breaking. In
section 5, we test our method against of the case of a plaquette of four spins ind = 2
dimensions; the free energy and the order parameter are obtained at all the temperatures for
the replica symmetry and one symmetry breaking solutions. In section 6, we resume the
results obtained, and some future developments are discussed.

2. New look at the replica approach

We consider Ising spin-glass models with nearest neighbours interactions on ad-dimensional
lattice ofN sites. The Hamiltonian is

H = − 1

(2d)
1
2

∑
(i,j)

Ji,j σiσj

where the{σi = ±1} are theN spin variables and the{Ji,j } are thedN independent normal
Gaussian random variables (zero mean and unitary variance). The sum runs on all thedN

nearest neighbours sites(i, j).
The partition function reads

Z =
∑
{σ }

exp{−βH }

whereβ is the inverse temperature. The quenched free energy is

fd = − lim
N→∞

1

βN
lnZ (2.1)

where · indicates the average over the disorder variables{Ji,j }. Indeed, almost all the
disorder realizations have the same free energy in the thermodynamic limitN →∞.

Unfortunately, it is not possible to find an explicit expression of (2.1) in terms of simple
functions because of the presence of the logarithm in the disorder average. The standard
replica approach [5] tries to avoid this difficulty by replacing the above quenched average
with the average of thenth power of the partition functionZ with an integern. In fact, if
the result can be analytically continued to realn, one has

fd = − lim
n→0

lim
N→∞

1

βNn
lnZn. (2.2)
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The average over the Gaussian disorder variables gives

Zn = exp

{
1

4
β2Nn

}∑
{σ }

exp

{
β2

2d

∑
(i,j)

∑
a<b

σ ai σ
b
i σ

a
j σ

b
j

}
(2.3)

whereσai is theath replica of the spin in theith site.
Unfortunately, even in the replica context the free energy can be computed only in the

infinite-dimension limit. In this case, in fact, one reverts to the well known SK model [6],
and one has

f∞ = −β
4
+ lim

n→0

1

n
max
{qab}

[
β

2

∑
a<b

(qab)2− 1

β
ln
∑
{σ }

exp

{
β2
∑
a<b

qabσ aσ b
}]

(2.4)

whereqab is a real matrix. In the limitn→ 0 this maximum is found following the Parisi
ansatz [7–9]. Whend is finite, no analogous results are available, so it is sensible to look
for approximations as in this paper.

All the above expressions are so classical that it may seem completely useless to have
reproduced them here, indeed, the reason is that we would like to recast them in a more
general form by introducing the notion of cluster partition of the set ofN spins. The new
formulation, which is more general and provides the technical ingredients for our variational
approach, reduces to the standard replica trick in the case of clusters of a single spin.

To have an idea of the clusters imagine a plaquette of four nearest-neighbour spins in
two dimensions, or a cube of eight spins in three dimensions. In general, we perform a
decomposition of the set of the spins into clusters of the same shape, such that each spin
belongs to one and only one of them. In the following we indicate with(i, j)′ all the couples
of nearest-neighbour sites that belong to the same cluster, and with· ′ the disorder average
over the couplings between them. In the same way(i, j)′′ denotes all the nearest-neighbour
sites of different clusters, and· ′′ the related disorder average. Finally,(i)′ runs only over
the boundary sites of all the clusters. Moreover, the following definitions are useful

nσ = number of spins in a cluster

nb = number of boundary spins in a cluster

nJ = number of bonds in a cluster

which imply that N
nσ

is the total number of clusters in the system, and that

∑
(i)′

1= nb

nσ
N

∑
(i,j)′

1= nJ

nσ
N

∑
(i,j)′′

1=
(
d − nJ

nσ

)
N.

For instance, in figure 1 one has clusters ofnσ = 12 spins, withnb = 8 boundary spins
andnJ = 16 internal bonds per cluster.

Then, we again compute the free energy with the replica trick, but this time we perform
the average ofZn only over those bounds that couple different clusters:

fd = − lim
N→∞

lim
n→0

1

βNn
lnZn

′′′
. (2.5)
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Figure 1. Decomposition of a two-dimensional spin lattice in clusters ofnσ = 12 spins, with
nb = 8 boundary spins (white circles), 4 internal spins (black circles) andnJ = 16 internal bonds
(full lines) per each cluster. The broken lines represent the bonds between spins belonging to
different clusters.

Somehow, this expression interpolates between (2.2) which corresponds to clusters of a
single spin (no couplings inside the clusters) and the quenched expression (2.1) which
corresponds to a single cluster of size of orderN spins.

A simple calculation gives

Zn
′′ = exp

{
1

4
β2Nn

(
1− nJ

dnσ

)}∑
{σ }

exp{−βH(n)} (2.6)

where

H(n) = − 1

(2d)
1
2

∑
(i,j)′

Ji,j

n∑
a=1

σai σ
a
j −

β

2d

∑
(i,j)′′

∑
a<b

σ ai σ
b
i σ

a
j σ

b
j . (2.7)

Note that the first sum, which runs on internal couplings, disappears when the clusters are
of a single spin. In this case (2.6) and (2.7) reduce to (2.3).

3. The variational approach

Let us start by only considering clusters where all boundary spins are topologically
equivalent, as for example ad-dimensional hypercube of 2d spins, or the crosses shown in
figure 1 on a two-dimensional lattice.

We now introduce a trial HamiltoniañH(n) instead ofH(n), where the first term related
to the interactions between spins of the same cluster is left unchanged, while the second is
modified with the replacement

σai σ
b
i σ

a
j σ

b
j → qab(σ ai σ

b
i + σaj σ bj ) (3.1)

where the{qab} are a set of variational parameters of the problem. Recall thati andj are a
couple of boundary sites of different clusters. The intuitive meaning of our approximation
is clear: the coupling field{qab} simulates the action of the rest of the system over the
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boundary of a cluster in the replica space. Note that now the spins on the boundaries of
different clusters do not interact, so that the total Hamiltonian is the sum of the Hamiltonians
of each cluster. Therefore, with the replacement (3.1), the new HamiltonianH̃ (n) has the
form

H̃ (n) =
∑
clust

�clust
(n) (3.2)

with

�clust
(n) = − 1

(2d)
1
2

clust∑
(i,j)′

Ji,j

n∑
a=1

σai σ
a
j −

β

nb

(
nσ − nJ

d

) clust∑
(i)′

∑
a<b

qabσ ai σ
b
i (3.3)

where the sums
∑clust

(i,j)′ and
∑clust

(i)′ now run over, respectively, the internal nearest neighbours
bonds and the boundary sites of a single cluster.

Using the convexity of the exponential, the following inequality holds for any integer
n > 1:

ln
∑
{σ }

exp{−βH(n)}
′
= ln〈e−β(H(n)−H̃ (n))〉

′
+ ln

∑
{σ }

exp{−βH̃ (n)}
′

> max
{qab}

[
− β〈H(n) − H̃ (n)〉

′
+ ln

∑
{σ }

exp{−βH̃ (n)}
′]

(3.4)

where the〈·〉 indicates the average over the Gibbs measure induced by the Hamiltonian
H̃ (n). Since the sitesi andj belong to different clusters, one has

〈σai σ bi σ aj σ bj 〉
′ = 〈σai σ bi 〉

′〈σaj σ bj 〉
′ = 〈σaσ b〉′2 (3.5)

where the indices have been suppressed because of the equivalence of boundary spins. As
a consequence one can write the simple expression

−β〈H(n) − H̃ (n)〉
′
= 1

2
β2N

(
1− nJ

dnσ

)∑
a<b

(
〈σaσ b〉′2− 2qab〈σaσ b〉′

)
. (3.6)

The maximum in the right-hand side of (3.4) can be found by deriving it with respect
to eachqab, so that after some trivial algebra one has the following system of1

2n(n − 1)
self-consistent equations

qab = 〈σaσ b〉′ 16 a < b 6 n. (3.7)

The right-hand side of (3.4) is the maximum of an expression containing averages with
respect to the Gibbs measure which are quite complicated. Fortunately, it can be replaced
by the more simple and compact expression

max
{qab}

[
− 1

2
β2N

(
1− nJ

dnσ

)∑
a<b

(qab)2+ ln
∑
{σ }

exp{−βH̃ (n)}
′]

(3.8)

which not only has the same value but also leads to the same self-consistent equations (3.7),
as shown in appendix A. Then, bearing in mind thatH̃ (n) is a Hamiltonian fully decomposed
into the Hamiltonians�clust

(n) corresponding to theN
nσ

different clusters, it is possible to
perform the thermodynamic limit and then the limitn→ 0. In doing this second limit one
has to be careful since the inequality (3.4) has been established for integern > 1 and it
changes direction when we perform the analytic continuation to realn < 1. In conclusion,
one has

fd > f̃d (3.9)
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with

f̃d ≡ −β
4

(
1− nJ

dnσ

)
+ lim

n→0

1

n
max
{qab}

[
β

2

(
1− nJ

dnσ

)∑
a<b

(qab)2

− 1

βnσ
ln
∑
{σ }

exp{−β�(n)}
′]

(3.10)

where�(n) is a representative Hamiltonian of a single cluster.
Before ending this section we would like to stress that (3.10), derived for clusters

where the boundary spins are topologically equivalent, can be easily extended to a generic
cluster decomposition of the lattice (see appendix B). In this case to every boundary
spin σi is associated a differentqabi and the maximization can become very complicated.
Nevertheless, (3.9) and (3.10) with a singleqab still hold althoughf̃d is no longer the
optimal approximation. The maximum is reached when

qab = 1

nb

∑
{i}′
〈σai σ bi 〉

′
.

Let us briefly sum up the results of this section. We have found lower limitsf̃d for the
quenched free energyfd of a spin glass ind dimensions via the replica formalism. The
approximations of thefd by the free energies̃fd improve as the size of the cluster increases.
The structure of the solution is familiar, since we have to compute a maximum of a function
which depends on a set of1

2n(n− 1) variational parameters in the limitn→ 0.
Note thatf̃d turns out to be a generalization of the expression (2.4) for the SK model

free energyf∞. In fact, independently of the dimensiond, f̃d reduces to (2.4) when one
chooses a cluster of a single spin. The proof is trivial since in this case one hasnσ = 1,
nb = 1 andnJ = 0 so that the first term in the HamiltoniañH(n) vanishes. This fact is
quite interesting since it implies that the well known expression (2.4) for the SK model free
energy represents in our scheme, so to speak, the zero-order approximation of the random
Ising spin glass in finite dimensions.

It also should be remarked that in the limitd → ∞, independently on the size of the
clusters, one reduces to the SK model.

4. Replica symmetry breaking with the Parisi ansatz

It is quite simple to show that in the SK model, for any integern > 1, the maximum in
(2.4) is reached when all theqab assume the same value

qab = q0 16 a < b 6 n (4.1)

with q0 > 0. This is the replica symmetry solution, but unfortunately it turns out to be
unstable and unphysical in the limitn→ 0 (for example, it has a negative zero temperature
entropy).

Parisi has proposed a simple way [7–9] to break the above symmetry between then

replicas. He chooses to organize them inn
m1

groups ofm1 replicas, and to assume aqab

with two different values. The larger value corresponds toa andb belonging to the same
group, and the smaller one toa andb in different groups. This strategy can be iterated by
repeating the same procedure for each group and all its subgroups, so that thekth order
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breaking can be written as

qab = qs if


[
a

ms

]
=
[
b

ms

]
[

a

ms+1

]
6=
[

b

ms+1

] with

{
16 a < b 6 n
06 s 6 k

(4.2)

where [·] means an integer part. All the{qs − qs−1} are assumed to be non-negative and it
is also assumed thatm0 ≡ n andmk+1 ≡ 1.

The above Parisi ansatz is straightforward for integern if all the {ms} and the{ ms
ms+1
}

can be chosen as integers. The intriguing point is that, after the analytic continuation to real
n in the limit n→ 0, the{qs,ms} are treated as a set of 2k + 1 real variational parameters
with the constraint

06 · · · 6 ms 6 ms+1 6 · · · 6 mk+1 ≡ 1.

This constraint allows for a well-defined overlap probability. Recall that it is sufficient to
use few replica symmetry breaking (sayk = 2) to achieve a solution of the SK model with
realistic behaviours (such as,T = 0 free energy consistent with numerical simulations, or
T = 0 non-negative entropy).

The ansatz (4.2) can be easily adapted to our more generalf̃d . The main difference
with the SK model is the presence of the coupling terms in the Hamiltonian�(n), but they
do not mix different replicas, so that the usual steps used for solving the SK model can be
repeated. Recalling the well known trick of the Gaussian integral, the solution off̃d with
k > 0 breaking can be written as

f̃d,k = max
{qs ,ms }

[
− β

4

(
1− nJ

dnσ

)(
(1− qk)2+

k∑
s=1

ms(q
2
s−1− q2

s )

)
+ fk

]
(4.3)

with

fk = − 1

βnσm1
ln

. . . [[Zk]mk h(k)] mk−1
mk

h(k−1)

. . .


m1
m2

h(1)
J,h(0)

(4.4)

Zk =
∑
{σ }

exp{−βHk} (4.5)

and

Hk = − 1

(2d)
1
2

clust∑
(i,j)′

Ji,j σiσj − 1

n
1
2
b

(
nσ − nJ

d

) 1
2

clust∑
(i)′
σi

(
q

1
2

0 h
(0)
i +

k∑
s=1

(qs − qs−1)
1
2h
(s)
i

)
.

(4.6)

Each of thek+1 averages{ · h(s)} (06 s 6 k) containsnb independent normalized Gaussian
fields{h(s)i } acting only on the boundary spins of the cluster. The set{h(0)i } is the only one to

appear in a quenched average· J,h(0) together with thenj random couplings{Ji,j } internal
of the cluster. Note that in the Hamiltonian (4.6) we have replicated only thenσ spin
variables of the cluster.

Equations (4.3)–(4.6) have the same structure of the Parisi solution of the SK model
with k replica symmetry breaking, except for a more general form ofHk. In particular,
the Parisi solution for the SK model can be recovered, independently on the dimensiond,
choosing a cluster of a single spin. For a larger cluster the Parisi solution can only be
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recovered whend → ∞. In both cases, in fact, the first sum in (4.6) disappears, and the
factor in front of the second sum equals one.

It is worth noting that the dependence of the solution from the number of dimensionsd

is purely algebraic, once the shape of the cluster is fixed, so that the same algorithm holds
for every dimensiond, which only plays the role of a parameter.

5. An application in d = 2 dimensions

We check our method ind = 2 dimensions by choosing the elementary plaquette of four
nearest neighbours spins as the cluster, so thatnσ = nb = nJ = 4. With this choice the
replica symmetry solution ((4.3)–(4.6) withk = 0) reads

f̃0 = max
q0

[
− β

8
(1− q0)

2− 1

4β
ln
∑
{σ }

exp{−βH0}
J,h(0)

]
(5.1)

with

H0 = −1

2

4∑
i=1

Jiσiσi+1− 1

2
1
2

q
1
2

0

4∑
i=1

h
(0)
i σi

while the solution with one replica breaking (k = 1) is

f̃1 = max
{q0,q1,m}

−β
8
((1− q1)

2+m(q2
0 − q2

1))−
1

4βm
ln

[∑
{σ }

exp{−βH1}
]mh(1) J,h(0) (5.2)

with

H1 = −1

2

4∑
i=1

Jiσiσi+1− 1

2
1
2

4∑
i=1

σi(q
1
2

0 h
(0)
i + (q1− q0)

1
2h
(1)
i ).

It is obvious that (5.2) reduces to (5.1) whenq1 = q0 andm = 0. The maximum in
(5.1) and (5.2) can be found through standard numerical methods. For instance, deriving
(5.2) with respect to{q0, q1, m}, one can write down a set of self-consistent equations which
can be solved numerically.

The result is that the order parameters differ from 0 below a critical temperature
Tcr ∼ 0.86, that is sensibly lower than the corresponding one of the SK model (Tcr = 1).

In figure 2 we plot the free energies̃f0 and f̃1 as a function of the temperatureT in
the range 0< T < Tcr. They are compared with the SK results and with the free energy
of an isolated plaquette with Gaussian couplings and no boundary fields. Our free energies
show a certain improvement with respect to the SK ones from a quantitative point of view,
while the isolated plaquette badly describes the systems below the temperatureT = 0.7.

In figures 3(a) and (b) the q0, q1 and them order parameters of the one breaking
solutions are plotted, respectively, as a function of the reduced temperatureT/Tcr. The
qualitative behaviours are very similar to the SK corresponding parameters.

Let us finish this paragraph with a technical remark about the implementation of an
algorithm able to find the maximum in (4.3). The expression (4.4) forfk suggests that the
number of breakingk is the main source for the algorithmic complexity. In fact, one must
first compute a quenched average overnJ +nb Gaussian variables (theJ and theh(0)); then
an average over othernb variables (theh(1)), and so on. Using Monte Carlo algorithms this
leads to a computing timet for f (k)clust proportional to

t ∼ (nJ + nb)nkb
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Figure 2. Free energy as a function of the temperatureT in d = 2 dimensions: replica symmetry
and one breaking solutions for the four spins plaquette (broken curves), SK replica symmetry and
SK one breaking (chain curves), single plaquette (full line) with no boundary fields (qab = 0).
The vertical bars represent the numerical error on the one breaking solution for the plaquette.

so that a unitary growth of the breaking number corresponds to a large growth oft which
is amplified of a factornb. In contrastt only has a polynomial dependence onnJ andnb,
so that it is less difficult to increase the size of the cluster. Finally, the dimensiond is not
significant, since the complexity of the algorithm does not depend ond.

6. Conclusion

In this paper we have presented a new method which approximates in a hierarchical way the
random Ising spin glass ind dimensions. At the lowest level our approximation coincides
with the SK model while at the highest level it coincides with the trued-dimensional system.
The attention is focused on finite clusters of spins where the action of the rest of the system
is taken into account and it turns out that the larger the cluster, the better the approximation.
Since the method is variational, we have rigorous bounds for the quenched free energy which
become more and more precise when larger and larger clusters are considered.

Our approach uses the replica trick and the Parisi ansatz for the order parameter. We
have explicitly written the solution for both the replica symmetric and replica breaking case.
In the case of replica symmetry the Hamiltonian (4.6) reduces to the case of a spin glass
of finite size with Gaussian magnetic fields of varianceq0 at the boundary. This variance
is than chosen in order to feign at the best the action of the rest of the system (a similar
approach has been proposed by Hatano and Suzuki [10, 11], where the variance is fixed by
a self-consistent equation).

We have explicitly computed the free energy for a four-spins plaquette in two dimensions
both in the replica symmetric and in the replica breaking context. In principle, in this second
case we should have considered an infinite breaking number, in practice, we only consider
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Figure 3. Order parameters for the four-spins plaquette ind = 2 dimensions, as a function of
the reduced temperatureT/Tcr : (a) replica symmetryq0 and one breakingq1; (b) one breaking
m.

a single breaking since the amount of computational work increases enormously when one
consider a larger breaking number while the value of the thermodynamical quantities changes
very little.

We would like to remark, that in spite of the fact that the replica broken solution is
always better than the unbroken one (given a finite-size cluster), both of them converge to
the reald-dimensional spin glass when the size of the cluster is increased. Therefore, our



A variational approach to Ising spin glasses in finite dimensions 4137

approach can be used to improve the numerical simulations of spin glasses. In fact, the
numerical approach tries to understand the properties of spin glasses in the thermodynamical
limit using finite-size systems, i.e. finite clusters with periodic boundary or open conditions.
In our replica symmetry context we retain this scheme but we can take into account the
action of the rest of the system without increasing too much computing time. The ordinary
numerical study chooses a zero-variance magnetic field at the boundary (q0 = 0), while we
have a variance which can be optimized. In conclusion, one should:

(1) consider the finite-size system and apply Gaussian fields of varianceq0 at the
boundary;

(2) compute numerically the free energy and the overlap for various values ofq0;

(3) chooseq0 in order that it equals the overlap1
nb

∑
{i}′ 〈σai σ bi 〉

′
(we stress once more

that q0 = 0 would correspond to the standard numerical study with open boundaries).
Investigations concerning this numerical strategy represents the first natural development

and are actually in progress.
We think that our approach will also be useful in studying the most striking feature

of spin glasses, i.e. the phase transition to a glassy phase at finite temperature for high
dimensionality(d > 3). We also think that one should be able to find out eventual specific
characteristic of the finite-dimension spin-glass phase. Once again, our hope lies in the
fact that, in principle, we are able to interpolate between the SK model (cluster of a single
spin) and the finited-spin glass (cluster of infinite spins). This is a clear improvement
with respect to other approaches to the problem (for instance, [3, 4]). In particular, the
advantages with respect to the formulation of [3, 4] are two: first, we can write inequalities
concerning the free energy; second, we are able to include the replica symmetry breaking.
Indeed, the initial motivation of this research was precisely to extend the results of [3, 4]
to the broken symmetry case.

Actually, this fundamental key point will be the second natural development of this
work. In particular, the next step will consist of performing a wide numerical analysis of
the two- and three-dimensional cases, with larger and larger spin clusters, in order to deeply
investigate the glassy phase transition.
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Appendix A

In order to compute

max
{qab}

[
− β〈H(n) − H̃ (n)〉

′
+ ln

∑
{σ }

exp{−βH̃ (n)}
′]

(A.1)

we derive the expression to be maximized with respect toqab. Taking into account (3.6),
one has that this derivative vanishes when

β2N

(
1− nJ

dnσ

)∑
a′<b′

∂〈σa′σb′ 〉′
∂qab

(
〈σa′σb′ 〉′ − qa′b′

)
− β2N

(
1− nJ

dnσ

)
〈σaσ b〉′



4138 R Baviera et al

+β
2

nb

(
nσ − nJ

d

)∑
(i)′
〈σaσ b〉′ = 0. (A.2)

Since
∑

(i)′ 1= nb
nσ
N , the sum of the last two terms identically vanishes and one immediately

obtains the self-consistency equations

qab = 〈σaσ b〉′ 16 a < b 6 n. (A.3)

On the other hand, let us consider the simpler expression (3.8)

max
{qab}

[
− 1

2
β2N

(
1− nJ

dnσ

)∑
a<b

(qab)2+ ln
∑
{σ }

exp{−βH̃ (n)}
′]
. (A.4)

The derivative with respect toqab vanishes when

−β2N

(
1− nJ

dnσ

)
qab + β

2

nb

(
nσ − nJ

d

)∑
(i)′
〈σaσ b〉′

= β2N

(
1− nJ

dnσ

)(
〈σaσ b〉′ − qab

)
= 0 (A.5)

which again leads to the self-consistency equations (A.3).
Finally, it is easy to check that (A.1) and (A.4) assume the same value when

〈σaσ b〉′ = qab.

Appendix B

In this appendix we derive a generalization of formulae (3.9) and (3.10) for the more general
case of a full decomposition of the lattice in equal clusters with no topological equivalence
of boundary sites.

For instance, imagine a square cluster ofL2 sites ind = 2 dimensions. First of all,
the corner sites have two external bonds at variance with the unique external bond of the
other boundary sites. Furthermore, the external location of the site along the boundary
also determines the strength of the interaction with external spins. For these reasons, in

general, the averaged overlap〈σai σ bi 〉
′

depends on the boundary sitei, and (3.5) does not
hold anymore. It follows that we have to modify the replacement rule (3.1) in order to take
into account the topological differences between the various boundary spins.

The boundary sites can be grouped intonb classes; each class consists ofN
nσ

topologically
equivalent sites, one per cluster. We focus the attention on a given cluster (the reference
cluster), so that itsnb boundary sites(k)′ are the representative elements of each class.
Then, we introduce the functionk(i) which associate the generic boundary sitei with its
representative of the reference cluster. Two sites of the reference cluster, sayk(i) andk(j),
are ‘adjoint nearest neighbours’ if the couplei, j belongs to the set(i, j)′′, and (k̃ → k)

indicates all the adjoint nearest neighboursk̃ of the sitek.
At this point, it is straightforward to replaceqab with a set ofnb parameters{qabk }, one

per representativek site. The total number of variational parameters is, therefore,nb
2 n(n−1).

The replacement rule (3.1) for a couple of boundary sites can now be generalized as
follows:

σai σ
b
i σ

a
j σ

b
j → qabk(j)σ

a
i σ

b
i + qabk(i)σ aj σ bj . (B.1)

In other words, each replaced external interaction leaves a different memory.



A variational approach to Ising spin glasses in finite dimensions 4139

With the replacement (B.1) the Hamiltonian of a cluster reads

�(n) = − 1

(2d)
1
2

clust∑
(i,j)′

Ji,j

n∑
a=1

σai σ
a
j −

β

2d

∑
a<b

clust∑
(i)′
σai σ

b
i

∑
(k̃→k(i))

qab
k̃

(B.2)

and the averaged overlaps of two boundary sites of different clusters are

〈σai σ bi σ aj σ bj 〉
′ = 〈σai σ bi 〉

′ 〈σaj σ bj 〉
′ = 〈σak(i)σ bk(i)〉

′ 〈σak(j)σ bk(j)〉
′
.

Formula (3.4) still holds for any integern > 1, so that

ln
∑
{σ }

exp{−βH(n)}
′
> max
{qabk }

[
− β〈H(n) − H̃ (n)〉

′
+ ln

∑
{σ }

exp{−βH̃ (n)}
′]

(B.3)

where

−β〈H(n) − H̃ (n)〉
′
= β2

4d

N

nσ

∑
a<b

∑
(k)′
〈σak σ bk 〉

′ ∑
(k̃→k)

(
〈σa
k̃
σ b
k̃
〉′ − 2qab

k̃

)
.

The maximum in the right-hand side of (B.3) can be found by solving the following system
of nb

2 n(n− 1) self-consistent equations

∑
(k̃→k)

qab
k̃
=
∑
(k̃→k)
〈σa
k̃
σ b
k̃
〉′

{
16 k 6 nb
16 a < b 6 n

(B.4)

and the expression to be maximized in (B.3) can be replaced by the following expression
which has the same maximum at the same point:

−β
2

4d

N

nσ

∑
a<b

∑
(k)′
qabk

∑
(k̃→k)

qab
k̃
+ ln

∑
{σ }

exp{−βH̃ (n)}
′
.

Finally, the analytic continuation to realn→ 0 gives

fd > f̃d (B.5)

with

f̃d ≡ −1

4
β

(
1− nJ

dnσ

)
+ lim

n→0

1

n
max
{qabk }

[
β

4dnσ

∑
a<b

∑
(k)′
qabk

∑
(k̃→k)

qab
k̃

− 1

βnσ
ln
∑
{σ }

exp{−β�(n)}
′]
. (B.6)

Note that the{qabk } are not all different if there are symmetric sites in the clusters. For
example, the sites on the four corners of a square plaquette ind = 2 dimensions will share
the same overlaps.

Finally, if we look for the maximum of (B.6) with the constraint

qabk = qab ∀k = 1, . . . , nb

we are left with formula (3.10). Therefore, in this context, (3.10) is a worse approximation,
except all the boundary sites of the cluster are topologically equivalent.
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